

VARIETY GUIDE 2024/2025

Southern Region

HOW TO USE THIS GUIDE

This guide is designed to help growers in the Southern cane growing region with their agronomic considerations when selecting new varieties to plant and trial on their farms. The information comes from the best available data of regional variety performance and disease ratings. The information in the tables will help you understand:

	New and recent varieties available in the Southern region	4
	Smut ratings	6
	Pachymetra ratings	7
	Harvest management	8
	Variety by herbicide screening trials	10
	Disease resistance	12
	Variety adoption in each mill area	13
	Sugarcane Biosecurity Zone Map	17
	Propagating new varieties	18
	Planting and managing tissue-cultured plantlets in the field	19

WANT TO KNOW WHAT IS HAPPENING IN THE OTHER REGIONS?

You can find all the regional variety guides on the SRA website. Visit sugarresearch.com.au or scan the QR code.

(Cover page) A rainbow over 1st Ratoon SRA32® at the Bundaberg station. SRA32® is on hold for release with the next decision on its progress to be made at the 2025 RVC.

(Opposite) Weigh bin tipping into the haul out. Each 10m plot in a trial is weighed and extrapolated to give tonnes cane/hectare.

ISSN 2208-7605 (Online) ISSN 2208-7591 (Print) © Copyright 2024 by Sugar Research Australia Limited. All rights reserved. No part of the *Variety Guide 2024/25 Southern Region* (this publication), may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Sugar Research Australia Limited. Sugar Research Australia Limited acknowledges and thanks its funding providers, including levy payers (sugarcane growers and millers), the Commonwealth Government, and the Queensland Government (Department of Agriculture and Fisheries). **Disclaimer:** In this disclaimer a reference to 'SRA', 'we', 'us' or 'our' means Sugar Research Australia Limited and our directors, officers, agents and employees. Although we do our very best to present information that is correct and accurate, we make no warranties, guarantees or representations about the suitability, reliability, currency or accuracy of the information we present in this publication, for any purposes. Subject to any terms implied by law and which cannot be excluded, we accept no responsibility for any loss, damage, cost or expense incurred by you as a result of the use of, or reliance on, any materials and information appearing in this publication. You, the user, accept sole responsibility and risk associated with the use and results of the information appearing in this publication, and you agree that we will not be liable for any loss or damage whatsoever (including through negligence) arising out of, or in connection with the use of this publication. We recommend that you contact our staff before acting on any information provided in this publication. **Warning:** Our tests, inspections and recommendations should not be relied on without further, independent inquiries. They may not be accurate, complete or applicable for your particular needs for many reasons, including (for example) SRA being unaware of other matters relevant to individual crops, the analysis of unrepresentative samples or the influence of environmental, managerial or other factors on production.

NEW AND RECENT VARIETIES AVAILABLE IN THE SOUTHERN REGION

Variety Recommendation and Release Process

Regional Variety Committees (RVC) are responsible for variety release decisions. SRA supports these groups with secretariat support and the provision of technical information to assist the committee making decision on particular varieties. RVCs are composed of voting members and observers to ensure transparency in the decision making process.

The Southern RVC (Sugarcane Biosecurity Zone 4 and 5) voting membership consists of one grower representative, one miller representative and one Prod Board Services representative from Bundaberg, Isis, Maryborough and Rocky Point mill areas, in total 12 voting members. Rocky Point also sits on the NSW RVC as an observer. The Southern RVC requires a majority vote for progression of a variety through the breeding program and a majority vote for the release of a variety.

If you would like more information on new variety releases and regional variety committees, please visit the SRA website:
sugaresearch.com.au
or scan the QR code

Presented below are the results of trials conducted in the Southern region. Yield (TCH) and Commercial Cane Sugar (CCS) for each new variety are compared with the trial results of various standard varieties.

Variety: SRA44 [®] QS13-1279		Parentage: QS99-482 x QS00-2319 / Summary: High tonnes, low CCS.								
TRIAL HARVEST YEAR	CROP CLASS	AVG YIELD (TCH)				AVG CCS				# OF HARVESTS
		SRA44 [®]	Q208 [®]	Q240 [®]	KQ228 [®]	SRA44 [®]	Q208 [®]	Q240 [®]	KQ228 [®]	
(2018 FATs): 2019	Plant	99	99	86	90	13.9	14.7	15.2	15.1	4
2020	1R	104	99	93	92	14.9	15.7	16.3	16.1	3
2021	2R	117	114	104	103	14.3	15.1	15.7	15.6	4
(2020 Repeated FATs): 2021	Plant	129	112	112	115	13.0	14.0	14.6	14.6	3
2022	1R	121	118	120	122	13.8	14.8	15.3	15.5	3
2023	2R	95	95	96	100	13.3	14.7	15.2	15.1	3
Overall Performance		111	106	101	103	13.9	14.8	15.4	15.4	20
Available 2024										
Comments:		Southern clone released in 2024. Heavy stalk and good disease profile. Resistant to Fiji Leaf Gall, Pachymetra Root Rot, Smut and Mosaic. Intermediate resistance to Leaf scald and Red Rot. Low short fibre and average fibre content. Good harvestability.								

Variety: SRA38 [®] QS10-863		Parentage: QS92-339 x TCP87-3388 / Summary: High tonnes cane, moderate CCS.								
TRIAL HARVEST YEAR	CROP CLASS	AVG YIELD (TCH)				AVG CCS				# OF HARVESTS
		SRA38 [®]	Q208 [®]	Q240 [®]	KQ228 [®]	SRA38 [®]	Q208 [®]	Q240 [®]	KQ228 [®]	
(2016 FATs): 2017	Plant	101	100	100	105	15.7	16.0	16.0	15.9	5
2018	1R	102	91	98	99	15.0	14.7	15.1	15.4	5
2019	2R	89	81	80	81	14.6	14.3	14.7	15.0	5
(2018 Repeated FATs): 2019	Plant	99	99	86	90	14.8	14.7	15.2	15.1	4
2020	1R	106	99	93	92	16.0	15.7	16.3	16.1	3
2021	2R	115	114	104	103	15.5	15.1	15.7	15.6	4
Overall Performance		101	97	93	95	15.2	15.0	15.5	15.5	26
Available 2022										
Comments:		Southern clone released in 2022. Maintains productivity in ratoons. Resistant to Pachymetra Root Rot, Mosaic and Fiji Leaf Gall and intermediate resistant to Smut and Leaf Scald. Good fibre quality trends and average fibre content. Lodging has been recorded in trials.								

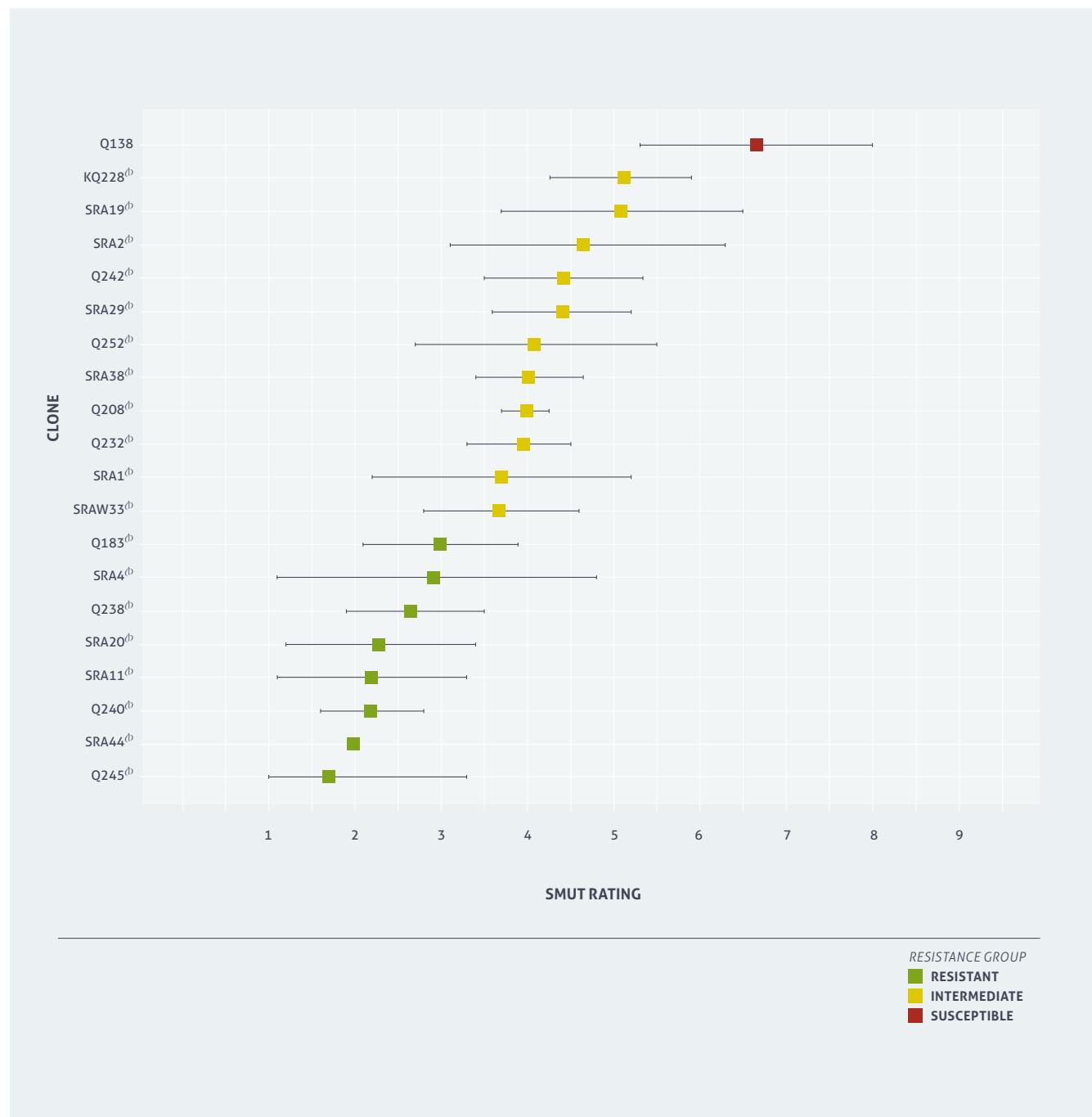
SRA44[®]

SRA38[®]

For more information on variety field trials contact:

Variety Officer Southern

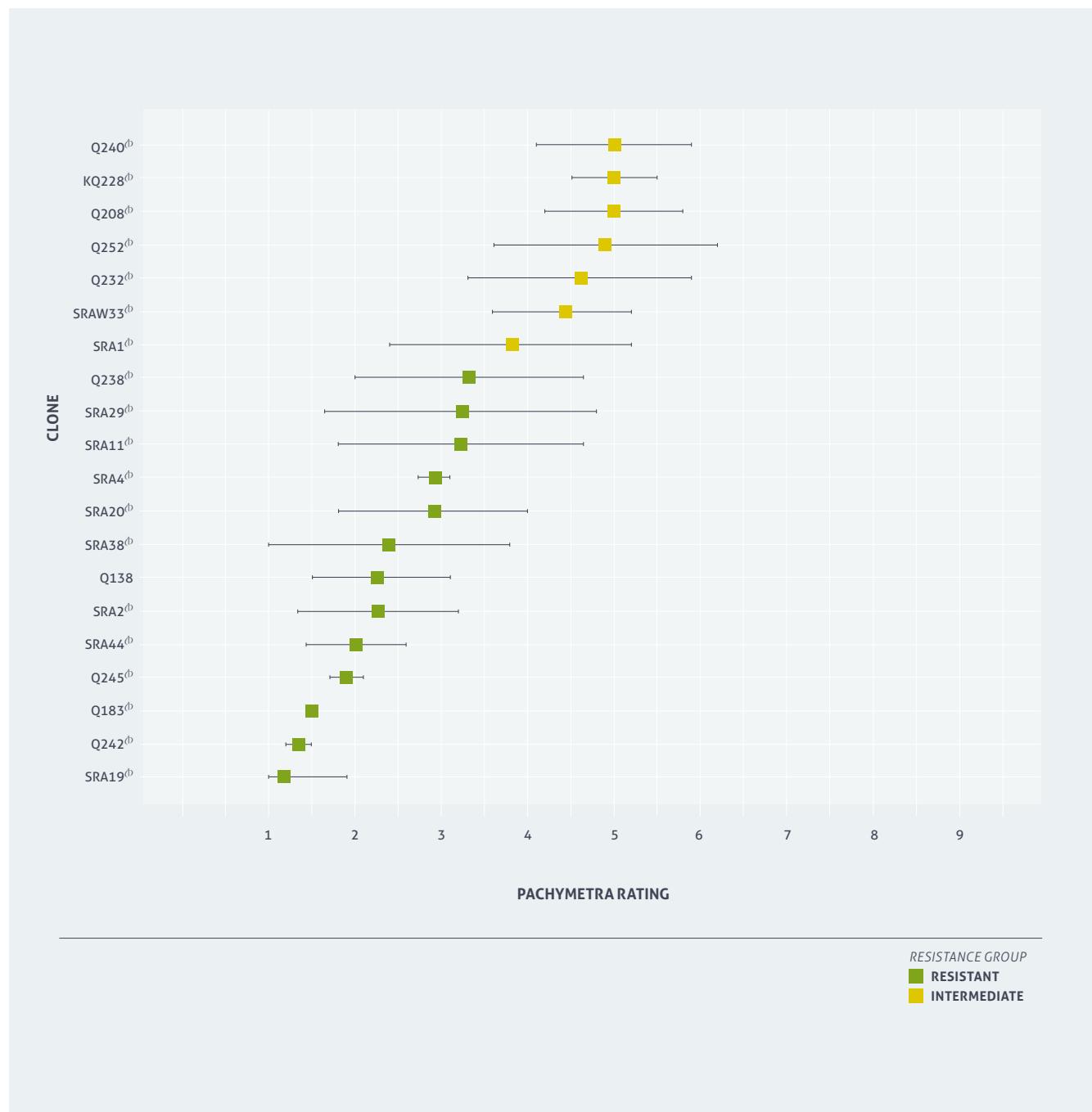
Clare Hogan


T 0410 221 763

E chogan@sugarresearch.com.au

SMUT RATINGS

Smut resistance ratings are calculated in inoculated field trials by assessing the incidence and severity of infection compared to standard varieties. The graph below includes the rating and the 95% confidence interval for each variety. The confidence interval is influenced by the number of trials and the uniformity of smut infection, indicating a scale of resistance, rather than a fixed number. SRA44[◊] has shown consistent results across trials and therefore has a confidence interval of 0. Q208[◊] has a rating of 4 with a narrow confidence interval of 3.6 to 4.2. SRA20[◊] has a rating of 2 with a confidence interval from 1.1 to 3.4. Rating confidence for varieties will improve as more data is collected.



PACHYMETRA RATINGS

Pachymetra resistance ratings are calculated from the severity of infection in a test clone compared to standard varieties in inoculated bench trials. The graph below includes the rating and the 95% confidence interval for each variety. The confidence interval is influenced by the number of trials and the uniformity of pachymetra infection, indicating a scale of resistance, rather than a fixed number. Q183[◊] has shown consistent results across trials and therefore has a confidence interval of 0. Q208[◊] has a rating of 5 and has a narrow confidence interval from 4.1 to 5.6 while the newer variety.

SRA20[◊] has a rating of 2.9 and ranges from 1.6 to 4.0. Rating confidence for each variety will improve as more data is collected.

HARVEST MANAGEMENT

Select varieties for a harvest plan that can be followed to maintain maximum CCS throughout the year. The tables below indicate early, mid and late sugar varieties.

Bundaberg and Isis					
VARIETY	EARLY SUGAR	MID SUGAR	LATE SUGAR	TRASHING	LODGING
SRA38 ^Ø	Average	Average	Good	Free-Average	Poor
SRAW33 ^Ø	Average	Good	Good	Average	Average
SRA29 ^Ø	Average	Average	Average	Free	Average
SRA20 ^Ø	Poor	Average	Good	Free-Average	Average
SRA19 ^Ø	Poor	Average	Good	Average	Average
SRA11 ^Ø	Average	Good	Good	Free	Good
SRA4 ^Ø	Average	Average	Average	Average	Good
SRA2 ^Ø	Good	Good	Good	Free-Average	Average
SRA1 ^Ø	Good	Good	Good	Average	Poor
Q252 ^Ø	Good	Good	Good	Free	Average
Q247 ^Ø	Poor	Poor	Poor	Tight	Good
Q245 ^Ø	Poor	Average	Average	Average	Average
Q242 ^Ø	Average	Average	Poor	Average-Tight	Poor
Q240 ^Ø	Good	Good	Average	Free-Average	Average
Q238 ^Ø	Poor	Average	Average	Average	Good
Q232 ^Ø	Poor	Average	Poor	Tight	Poor
KQ228 ^Ø	Good	Good	Average	Average-Tight	Average
Q208 ^Ø	Average	Good	Good	Free	Average
Q151 ^Ø	Good	Average	Poor	Average-Tight	Average
Q183 ^Ø	Poor	Average	Good	Free-Average	Average
Q138	Poor	Poor	Poor	Average	Average

Maximise your profit at harvest: Selecting varieties for specific sugar maturity profiles, planting and harvesting them for optimal CCS maturity can make a significant difference in the profit your crop can make for you. Making harvest decisions based on in-field maturity maximises profit making decisions.

TRASHING

FREE
FREE-AVERAGE
AVERAGE
AVERAGE-TIGHT
TIGHT

SEASONAL SUGAR AND LODGING

GOOD
AVERAGE
LOW
POOR
UNKNOWN

Rocky Point					
VARIETY	EARLY SUGAR	MID SUGAR	LATE SUGAR	TRASHING	LODGING
SRA38 ^b	Average	Average	Good	Free-Average	Poor
SRAW33 ^b	Average	Good	Average	Average	Average
SRA11 ^b	Average	Average	Average	Free	Unknown
SRA4 ^b	Average	Average	Average	Average	Unknown
SRA2 ^b	Good	Good	Average	Free-Average	Average
Q252 ^b	Good	Good	Good	Free	Average
Q242 ^b	Good	Good	Good	Average-Tight	Poor
Q240 ^b	Good	Good	Average	Free-Average	Average
Q238 ^b	Average	Good	Good	Average	Good
Q235 ^b	Good	Good	Average	Unknown	Poor
Q232 ^b	Poor	Average	Average	Tight	Unknown
KQ228 ^b	Good	Good	Average	Average-Tight	Average
Q208 ^b	Average	Average	Average	Free	Average
Q183 ^b	Average	Good	Good	Free-Average	Average
Q155 ^b	Good	Average	Average	Average	Average
Q138	Average	Average	Average	Tight	Unknown

Maryborough					
VARIETY	EARLY SUGAR	MID SUGAR	LATE SUGAR	TRASHING	LODGING
SRAW33 ^b	Average	Good	Good	Average	Average
SRA29 ^b	Average	Average	Average	Free	Average
SRA20 ^b	Poor	Average	Good	Free-Average	Average
SRA19 ^b	Poor	Average	Good	Average	Average
SRA11 ^b	Average	Good	Good	Free	Good
Q252 ^b	Good	Good	Average	Free	Average
Q245 ^b	Poor	Average	Average	Average	Average
Q242 ^b	Average	Average	Average	Average-Tight	Poor
Q240 ^b	Good	Good	Average	Free-Average	Average
Q238 ^b	Poor	Average	Average	Average	Good
Q232 ^b	Poor	Average	Average	Tight	Average
KQ228 ^b	Good	Good	Average	Average-Tight	Average
Q208 ^b	Average	Good	Good	Free	Average
Q183 ^b	Poor	Average	Good	Free-Average	Average
Q138	Average	Average	Average	Average	Good

VARIETY BY HERBICIDE SCREENING TRIALS

Sugarcane varieties are known to have variable responses to herbicides with some being more impacted than others. As a result, data outlining susceptibility is critical to optimise productivity outcomes.

Since 2014, SRA has conducted trials following a two-step process to obtain reliable data for the susceptibility of varieties to herbicide. This process is:

- a fully randomised replicated pot trial in year one to shortlist the most susceptible combinations of varieties and herbicides
- a fully randomised replicated field trial in year two to confirm that the shortlisted combinations have an impact on yield.

In year three, the two-step process starts again, with new combinations of newly released varieties and herbicides.

In these trials, products are applied at their maximum label rate (and their minimum water label rate) when plant cane is at four-to six-leaf stage.

In the pot trials, weekly phytotoxicity ratings are conducted using the European Weed Research Council (EWRC) rating scale **Table 1** and the aerial plant dry biomass is measured 10 weeks after spraying.

In the field trials, plant cane yield is measured at harvest using a weigh truck.

In all trials, KQ228[®] is assessed and used as a susceptible reference variety to compare to other tested varieties.

Table 2 describes the phytotoxicity symptoms obtained on KQ228[®] and their expected severity. All varieties present identical symptoms but their severity may vary between varieties.

Tables 3, 4 and 5 summarise all phytotoxicity, biomass and yield results obtained in the pot and field trials from 2014 to 2022.

These tables are updated yearly to include newly tested combinations of varieties by herbicides.

TABLE 1. EWRC selectivity rating scale

SCORE	SELECTIVITY
1	No effect
2	Very slight effects. Some stunting and yellowing just visible
3	Slight effects. Stunting and yellowing obvious, effects reversible
4	Substantial chlorosis and or stunting, most effects probably reversible
5	Strong chlorosis/stunting, thinning of stand (50% loss)
6	Increasing severity of damage (70% loss)
7	Increasing severity of damage (85% loss)
8	Increasing severity of damage (90% loss) a few plants survive
9	Total loss of plants and yield

For more information contact:
Emilie Fillols, Weed Scientist
T 07 4056 4510

TABLE 2. Summary of phytotoxicity ratings and symptoms obtained on the reference susceptible variety KQ228[®]

	2,4-D	AMETRYN	AMETRYN+ TRIFLOXY SULFURON	AMICARBAZONE	ASULAM	DIURON	FLUMIOXAZIN	METOLACHLOR	METRIBUZIN	MSMA
DESCRIPTION OF SYMPTOMS	Small white spotty discolorations	Yellowing of the whole plant	Slight yellow blotching	Small white spotty discolorations	Bright yellow blotching	Slight yellowing of the whole plant	Large necrotic lesions	Small necrotic lesions	Slight yellowing of the whole plant	Large necrotic lesions
PHOTOGRAPH OF SYMPTOMS										
KQ228 [®] PHYTO RATING RANGE										
	1.2 to 2.3	1.8 to 3.2	1.3	1.3 to 1.8	1.1 to 2.6	1.8 to 2.0	3.9 to 4.1	1.1 to 2.8	1.2 to 2.0	1.7 to 3.8

TABLE 3. Herbicide symptoms severity on the cane foliage for all testing varieties. (Legend: Refer to Table 1 (left) Page 10)

VARIETY	2,4-D	AMETRYN	AMETRYN+TRIFLOXY-SULFURON	AMICARBA-ZONE	ASULAM	DIURON	FLUMIOXAZIN	METOLACHLOR	METRIBUZIN	MSMA
KQ228 ^Ø	1.6	1.9	1.7	1.3	1.9	1.3	3.6	2.1	1.5	3.0
Q208 ^Ø	1.5		1.6		1.8			2.0	1.4	2.9
Q232 ^Ø	1.6		1.8		1.9			2.2	1.6	3.0
Q238 ^Ø	1.7		1.8		2.0			2.3	1.6	3.1
Q240 ^Ø	1.6		1.7		1.8			2.1	1.5	2.9
Q242 ^Ø	1.6		1.8		1.9			2.2	1.6	3.0
Q249 ^Ø	1.6		1.7		1.9			2.2	1.6	3.0
Q252 ^Ø	1.6		1.7		1.8			2.1	1.5	3.0
SRA1 ^Ø	1.3	1.7			1.6			1.9	1.3	2.7
SRA2 ^Ø	1.7	2.0			2.0			2.2	1.6	3.1
SRA4 ^Ø	1.6	1.9		1.3	1.9	1.4		2.2	1.6	3.0
SRA11 ^Ø	1.6	2.0		1.4	1.9		3.7	2.2	1.6	3.0
SRA19 ^Ø	1.4	1.8		1.1	1.7	1.2		2.0	1.4	2.8
SRA20 ^Ø	1.8	2.1		1.5	2.0	1.5		2.3	1.7	3.1
SRA29 ^Ø	1.8	2.1		1.5	2.0	1.5		2.3	1.7	3.1

The predicted EWRC scores and associated colour code are presented for each tested combination of herbicides by variety. The predicted EWRC scores derive from the average EWRC scores for each trial series, using KQ228^Ø as reference variety, in an attempt to harmonise trial variations as symptom severity can vary between trials: weather conditions at application, and/or during the trial can alter cane growth and herbicide response. Predicted EWRC scores derive from average EWRC scores across the 10-week assessment period, which means higher symptoms intensity and scores could have been observed during the assessment period.

TABLE 4. Percentage sugarcane dry biomass reduction in the pot trial (10 weeks after spraying) compared to the untreated control. (Legend: bottom of page)

VARIETY	2,4-D	AMETRYN	AMETRYN+TRIFLOXY-SULFURON	AMICARBA-ZONE	ASULAM	DIURON	FLUMIOXAZIN	METOLACHLOR	METRIBUZIN	MSMA
KQ228 ^Ø	-19%	-46%	-55%	-15%	-16%	-14%	-36%	no reduction	-25%	-21%
Q208 ^Ø	-29%		-33%		-12%			-51%	-21%	-50%
Q232 ^Ø	-13%		-42%		-26%			-33%	-13%	-33%
Q238 ^Ø	-40%		-34%		-62%			-35%	-32%	-39%
Q240 ^Ø	-36%		-28%		-41%			-7%	-21%	-37%
Q242 ^Ø	-14%		-12%		no reduction			no reduction	-7%	-12%
Q249 ^Ø	-54%		-46%		-61%			-24%	-7%	-65%
Q252 ^Ø	-38%		-11%		no reduction			-6%	-20%	-26%
SRA1 ^Ø	no reduction	no reduction			no reduction			no reduction	no reduction	no reduction
SRA2 ^Ø	no reduction	-5%			no reduction			no reduction	no reduction	-10%
SRA4 ^Ø	-19%	no reduction		-26%	-45%			-16%	no reduction	-47%
SRA11 ^Ø	no reduction	-9%		-33%	-57%		-49%	-18%	no reduction	-31%
SRA19 ^Ø	-38%	-52%		-38%	-85%	no reduction		no reduction	-10%	-66%
SRA20 ^Ø	-31%	-21%		no reduction	-96%	-6%		-4%	-37%	-18%

The predicted biomass reduction in the pot trials is represented in a green-to-red scale. The predicted biomass reduction derives from the biomass reduction for each trial series, using KQ228^Ø as the reference variety, in an attempt to harmonise trial variations: weather conditions at application, and/or during the trial can alter cane growth and herbicide response. Predicted biomass reduction compared to the untreated control is indicated in the table (a negative value indicates a biomass reduction compared to the untreated). Severe biomass reductions recorded 10 weeks after spraying are typical, as the plant metabolism has just been diverted into detoxifying the applied herbicide to the detriment of its growth. Usually yield loss by harvest time is less severe as the plant has had more time to recover from its growth delay.

TABLE 5. Percentage yield reduction in the field trial (at harvest) compared to the untreated control. (Legend: bottom of page)

The predicted yield reduction in the field trials is represented in a green-to-red scale. The predicted yield reduction is derived from the yield reduction for each field trial series. The percentage value compared to the untreated is indicated in the table (a negative value indicates a yield reduction compared to the untreated).

Legend

% VALUE = BIOMASS/YIELD REDUCTION (-%) OR GAIN (+%) IN THE POT/FIELD TRIAL COMPARED TO THE UNTREATED

COMBINATION OF HERBICIDE BY VARIETY NOT TESTED

VARIETY	2,4-D	AMETRYN	AMETRYN+TRIFLOXY-SULFURON	AMI-CARBAZONE	ASULAM	METO-LACHLOR	METRIBUZIN	MSMA
KQ228 ^Ø	no reduction	-11%		-7%	-1%		no reduction	-1%
Q232 ^Ø			-6%			no reduction	-4%	-1%
Q238 ^Ø			-8%				-3%	-5%
Q242 ^Ø			no reduction			-3%	-2%	-11%
SRA1 ^Ø					no reduction		no reduction	-9%
SRA2 ^Ø					-6%		-3%	-8%
SRA4 ^Ø					-8%		-3%	-8%
SRA11 ^Ø				-4%	-1%			

SLIGHT BIOMASS/YIELD REDUCTION IN POT/ FIELD TRIAL COMPARED TO UNTREATED

SEVERE BIOMASS/YIELD REDUCTION IN POT/ FIELD TRIAL COMPARED TO UNTREATED

NO BIOMASS/YIELD REDUCTION IN POT/ FIELD TRIAL COMPARED TO UNTREATED

MODERATE BIOMASS/YIELD REDUCTION IN POT/ FIELD TRIAL COMPARED TO UNTREATED

DISEASE RESISTANCE

The table below indicates disease ratings of the recommended varieties. Disease has the potential to lower the performance of varieties on your farm. This table will help you select varieties that will perform well given the diseases that may be present on your farm.

Southern Disease Ratings											
VARIETY	MILL AREA RECOMMENDED	FIJI LEAF GALL	MOSAIC	LEAF SCALD	SMUT	CHLOROTIC STREAK	ORANGE RUST	BROWN RUST	RED ROT	YELLOW SPOT	PACHYMETRA
SRA44 ^b	RP	R	R	I-R	R	U	U	U	I-R	U	R
SRA38 ^b	B, RP	R	R	I-R	I-R	U	U	U	R	U	R
SRAW33 ^b	B, I, M, RP	R	I-R	R	I-R	U	R	U	R	U	I-R
SRA29 ^b	B, I, M	R	R	R	I-R	U	U	U	I	U	R
SRA20 ^b	B, I, M	I	R	I	R	U	U	U	R	U	R
SRA19 ^b	B, I, M	I	R	R	I	U	R	U	I-R	I	R
SRA11 ^b	B, I, M, RP	R	R	R	R	U	R	U	I	U	R
SRA4 ^b	B, RP	R	R	R	R	U	R	U	R	I	R
SRA2 ^b	B, RP	R	I	R	I	U	I	U	R	I-R	R
SRA1 ^b	I	I	R	R	I-R	U	R	R	I	I-R	I-R
Q252 ^b	B, I, M, RP	I	R	R	I-R	U	R	U	R	I	I
Q247 ^b	B	R	R	R	I-R	U	R	U	R	S	R
Q245 ^b	B, I, M	R	R	R	R	U	R	U	S	R	R
Q242 ^b	B, I, M, RP	R	R	R	I-R	I	R	U	I-R	R	R
Q240 ^b	B, I, M, RP	I-S	R	R	R	I-R	R	U	R	I	I
Q238 ^b	B, I, M, RP	I-R	R	R	R	S	R	U	I-R	S	R
Q235 ^b	RP	R	R	R	I-R	I-S	I-R	U	R	R	R
Q232 ^b	B, I, M, RP	I	R	R	I-R	R	R	U	I-R	R	I
KQ228 ^b	B, I, M, RP	I	R	R	I	S	R	R	R	I	I
Q208 ^b	B, I, M, RP	I-S	R	R	I-R	R	R	R	R	R	I
Q183 ^b	B, I, M, RP	R	R	I	R	S	R	R	I	I-S	R
Q155 ^b	RP	R	I	R	I-R	I	R	R	S	I	S
Q151 ^b	B	R	R	R	R	U	R	R	I-R	U	I-S
Q138	B, I, M, RP	R	S	R	S	I-R	R	R	I-S	I	R

B BUNDABERG
I ISIS

M MARYBOROUGH
RP ROCKY POINT

Rotation of Varieties

Rotation of varieties for each crop cycle is important in the management of diseases. Arrange for your local productivity services officer to inspect your farm for disease. The *Diseases of Australian Sugarcane Field Guide* provides information on diseases including how to identify and manage them. The guide is available on the SRA website.

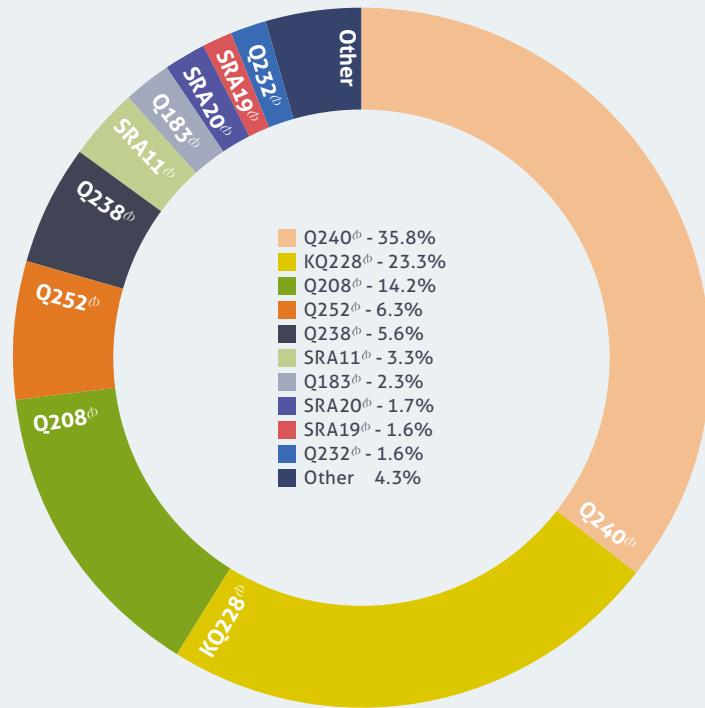
Visit sugarresearch.com.au or scan the QR code.

NOTE: You will note that RSD resistance ratings are not included in this variety guide. Varietal resistance is not one of the three pillars of RSD disease management; growers should continue to ensure that disease-free seed cane is used to establish crops, that crops are planted into volunteer-free land and equipment is decontaminated regularly.

No sugarcane varieties are resistant to RSD: they can all become infected, suffer yield losses, and further spread the disease. Some varieties are more sensitive to RSD and carry significantly higher levels of the bacteria. In situations where RSD is a high risk and hygiene measures are not guaranteed, it may be appropriate to avoid varieties such as KQ228^b and Q252^b.

- █ RESISTANT (R)
- █ INTERMEDIATE - RESISTANT (I-R)
- █ INTERMEDIATE (I)
- █ INTERMEDIATE - SUSCEPTIBLE (I-S)
- █ SUSCEPTIBLE (S)
- █ UNKNOWN (U)

VARIETY ADOPTION IN EACH MILL AREA


Use this information to assess yield performance of varieties over a number of years.
Caution should be taken when comparing commercial performance of newer varieties
(from plant and young ratoons) to older/established varieties (which include older ratoons).

Bundaberg (% TONNES 2023)

In 2023, a total of 989,298 tonnes of cane was harvested from 12,536 hectares in the Bundaberg region. The Bundaberg mill area had an average yield of 80.1 tonnes of cane per hectare and an average CCS of 14.7%.

Q240[®] continues its dominance as the majority variety in the Bundaberg region at 36 percent of production, similar to 2022. The top three varieties (Q240[®], KQ228[®] and Q208[®]) together make up 73% of production. Production of SRA19[®] and that of SRA20[®] increased to above 1% of production in 2023.

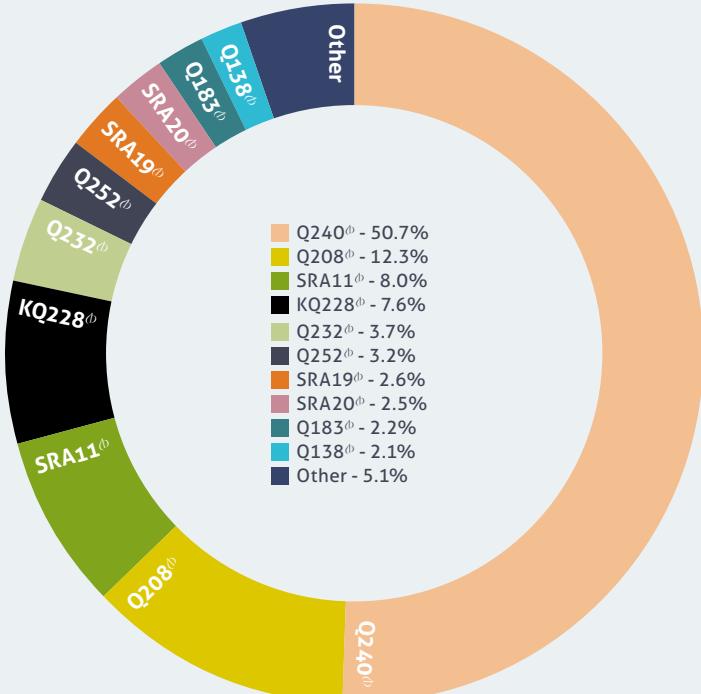
Q183[®], Q208[®], Q240[®] and Q252[®] performed at or above mill average for CCS in 2023.

(TCH & TSH 2023)

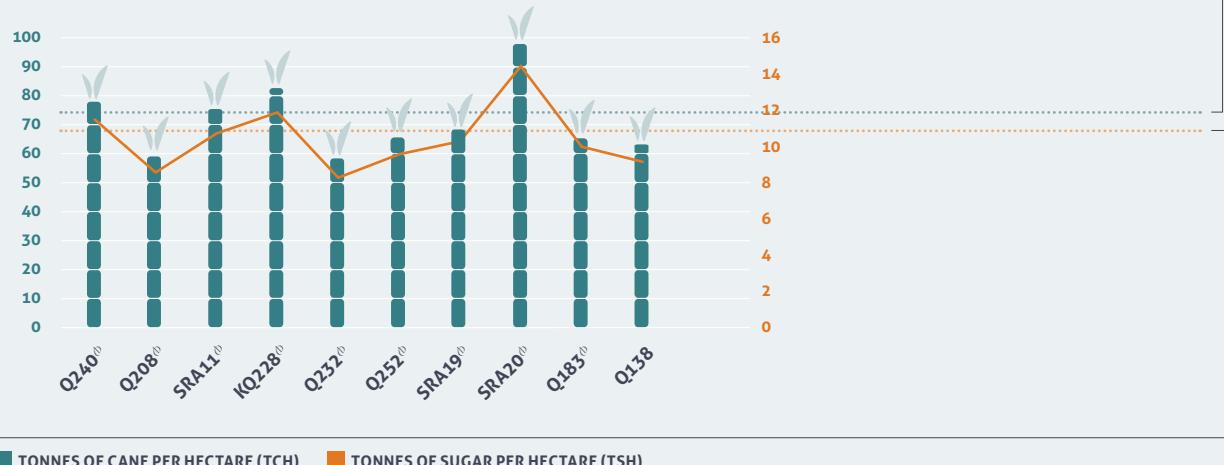
MILL AVG TSH (11.8)
MILL AVG TCH (80.1)

■ TONNES OF CANE PER HECTARE (TCH)

■ TONNES OF SUGAR PER HECTARE (TSH)


VARIETY ADOPTION IN EACH MILL AREA (CONT)

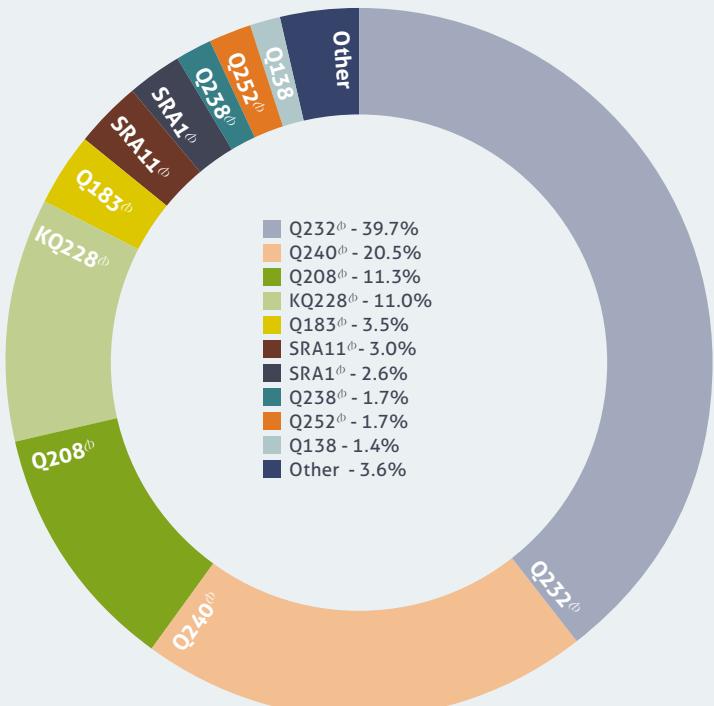
Isis (% TONNES 2023)


In 2023, a total of 1,035,609 tonnes of cane was harvested from 14,238 hectares in the Isis region. The Isis mill area had an average yield of 74.0 tonnes of cane per hectare and an average CCS of 14.7.

Q240[®] accounts for the majority of production in the Isis region with percent production up marginally from 50.4% in 2022 to 50.7% in 2023. Q208[®] had the second highest production at 12.3%. Varieties SRA19[®] and SRA20[®] have both moved to above 2% of production. A small quantity of SRA29[®] was also delivered to the mill (0.21% of production).

Q240[®] and SRA29[®] performed at or above mill average for CCS in 2023.

(TCH & TSH 2023)



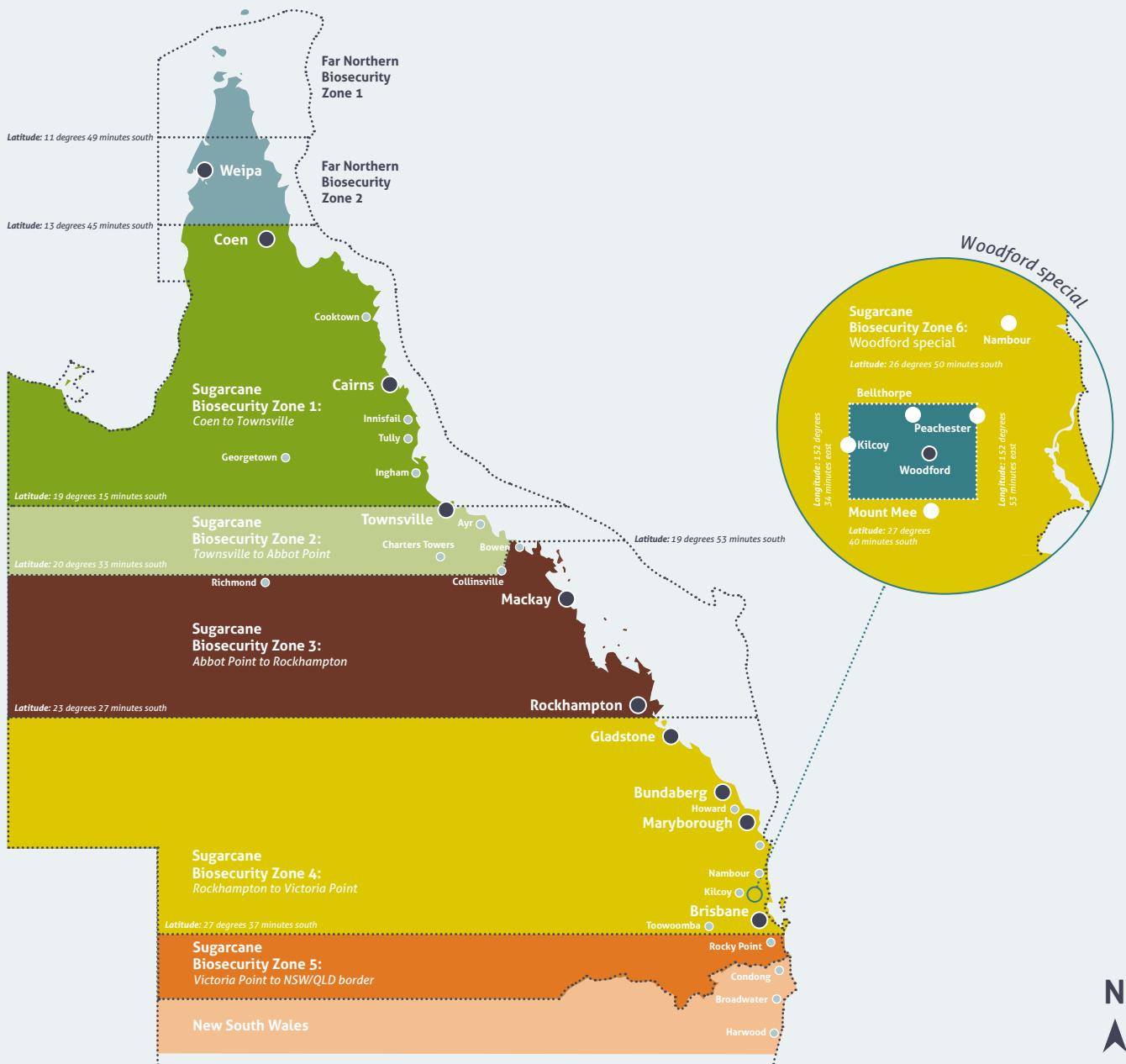
Rocky Point (% TONNES 2023)

In 2023, a total of 215,876 tonnes of cane was harvested in the Rocky Point region. The Rocky Point mill area had an average CCS of 13.5%. Area harvested was not reported.

Q232[®] remains the dominant variety in 2023, accounting for 39.7% of the total harvest, up 6% from the previous year. Q208[®] decreased by 7% to a total 11.3% of the crop while KQ228[®] and Q240[®] saw a 5% and 1% increase.

Q183[®], Q208[®], KQ228[®], Q240[®], Q252[®] and SRA11[®] performed at or above mill average for CCS in 2023.

MILL AVG CCS (13.5)



Sugarcane flowering in a propagation plot. All flowering plots in trials are noted which is then relayed in this guide.

SUGARCANE BIOSECURITY ZONE MAP

- All appliances (harvesters and other sugarcane machinery) moving between sugarcane biosecurity zones must:
 - > be free of cane trash and soil
 - > be inspected by an authorised inspection person who will issue a Plant Health Assurance Certificate (PHAC)
 - > be accompanied during transportation by the PHAC.
- Machinery moving from NSW to Qld requires a Plant Health Certificate issued by NSW Department of Primary Industries.
- Machinery inspections can be arranged by contacting the local Productivity Service organisation.
- To move sugarcane plants (stalks, leaves, potted plants, etc) between biosecurity zones contact Biosecurity Queensland (13 25 23).

PROPAGATING NEW VARIETIES

Contact your local productivity services organisation for regional advice on varieties (see back page for details). They can supply approved planting material of varieties and place orders for tissue culture plantlets.

Billet planting

PLANT MATERIAL FROM AN APPROVED SEED SOURCE

Approved seed provides cane growers with the highest quality planting materials in terms of disease status and being 'true-to-type'. Approved seed (stalks, billets, sets or tissue culture plantlets used for planting) is a key control measure for systemic diseases of sugarcane, including chlorotic streak, Fiji leaf gall, leaf scald, mosaic, ratoo stunting disease (RSD) and smut. Provision of approved seed in each mill area in the Australian sugar industry is coordinated by SRA, in cooperation with the local productivity services group. SRA provides DNA fingerprinted new varieties which the local productivity services group then maintains and distributes the approved seed to growers.

GROW SUGARCANE SPECIFICALLY FOR PLANTING MATERIAL

The block selected for growing plant material should be weed-free and sugarcane volunteer-free. When selecting cane for planting material the cane should be less than one year old, erect and free from damage. Plan for two or more eyes per sett when harvesting for billets or stick planting. For non-irrigated regions plants should be well watered, have adequate nutrition immediately prior to harvest for billet planting. For irrigated regions you may need to reduce fertiliser rates, withhold irrigation, or plant late in the season. The cane should also have originated from an approved seed plot and therefore be no more than three years away from long hot water treatment.

The best "whole farm" disease risk minimisation and productivity strategies can be achieved through consistent access to approved seed. It is highly recommended that cane considered for use as planting material be RSD tested well in advanced of harvest so an informed choice can be made prior to planting.

SET UP THE HARVESTER FOR CUTTING HIGH QUALITY SOUND BILLETS

Rubber coating rollers and optimising the roller speeds to chopper speed will produce good quality billets with minimal split or crushed ends and damaged eyes. Reduce the speed of harvesting and maintain sharp basecutter and chopper blades for clean cutting. Disinfect the machinery used to cut and plant new varieties to limit the spread of disease and weeds.

Tissue culture

CALCULATE HOW MUCH TISSUE CULTURE TO ORDER

We've made it easier with our online tissue culture calculator. It demonstrates the speed at which large quantities of planting material can be produced from a set number of plantlets or for a set cost. Below is a look-up table including common results. The calculator is available on SRA's website. [Visit sugarresearch.com.au/calculator](http://sugarresearch.com.au/calculator) or scan the QR code.

TRY TISSUE CULTURE AS AN APPROVED SEED SOURCE

Tissue culture is an excellent source of approved seed for all varieties and can help reduce the spread of serious diseases such as RSD, smut and Fiji leaf gall. Tissue-cultured plantings are more uniform and produce more sticks than conventional plantings so larger quantities of planting material are achieved the following year. This means earlier commercial-scale production of more productive new varieties can be achieved when using tissue culture.

STAGE	ORDER DEADLINE FOR SPRING PLANTING	ORDER DEADLINE FOR AUTUMN PLANTING
Grower finalises order. Productivity services group places order with SRA.	15 November	1 July
Productivity services group receives established plantlets from nursery and distributes to growers.	Delivery on agreed date between grower, productivity services group and nursery. Available in August.	Delivery on agreed date between grower, productivity services group and nursery. Available in March.

ESTIMATED COST AND TIME TO SCALE UP NEW VARIETY PRODUCTION USING TISSUE CULTURE

	No. plantlets ordered	100	250	500	1000
Yr 1	Approximate cost	\$150	\$375	\$750	\$1500
	Metre row planted @ 0.8m	80	200	400	800
	Metre row available for planting	2400	6000	12000	24000
Yr 2	Ha avail for planting @ 1.8m	0.4	1.1	2.2	4.3

For more information on tissue culture contact:

SRA Tissue Culture Manager Clair Bolton **E** cbolton@sugarresearch.com.au **T** 07 3331 3374

PLANTING AND MANAGING TISSUE-CULTURED PLANTLETS IN THE FIELD

Planting

- Prepare soil to a fine tilth to ensure good soil/root contact.
- A seedling planter can be used if one is available, although hand planting small numbers is not a huge job. Plant them deep at the bottom of a drill to prevent stool tipping.
- Fill in after early growth.
- Plant the plantlets 50cm to 1m apart. A good distance is 80cm, which will allow tillering to produce a high number of sticks.

Irrigating

- Provision of water is the most critical factor for the successful establishment of tissue culture plantlets.
- Irrigate plantlets immediately after planting and monitor them to ensure they don't dry out over the first three weeks to get the roots well established.
- If you do not have access to flood or sprinkler irrigation a simple irrigation system can be set up using cheap drip tape and an in-line filter hooked up to your garden tap or water tanker.

Weeds

- Weed control is important for good establishment and growth.*
- Ideally pre-irrigate the soil to germinate weeds, then apply a knock-down herbicide or cultivate just prior to planting to reduce the weed pressure on young plantlets.
 - Allow at least one week after planting before applying pre-emergent herbicides, longer if planted into cold, wet soils, as the root system needs time to establish:
 - > Atradex® at 2.5kg/ha plus Dual Gold® at 1.5L/ha has been successfully applied over the top, for grass and broadleaf weed control.
 - > Do not use diuron as young plantlets are sensitive to this product.
 - Sempra® at 100g/ha plus Activator at 200mL/100L for nutgrass. Both applications were sprayed over the top for nutgrass control.
 - Do not use paraquat unless you have no other option and only on established plantings.

Insects

- If you expect problems with insects then an application of an insecticide drench (such as chlorpyrifos or imidacloprid) at planting will protect the young plantlets.
- In canegrub-prone areas use your standard grub control treatment.

Fertiliser

- Fertiliser requirements of the tissue cultured plantlets are the same as for billet plantings.
- If possible, plant with a planter mix to maintain good early growth, and side-dress later to avoid fertiliser burn.

Your local productivity services and agronomy groups:

Isis Productivity Ltd:
T 07 4126 1444

Maryborough Cane
Productivity Services:
M 0487 017 811

Sugar Services
Bundaberg:
T 07 4151 2555

Rocky Point
Productivity Services:
T 07 5546 1481

sra

Sugar Research Australia Limited
ABN 16 163 670 068

Brisbane Office Level 10, 300 Queen Street QLD 4000 Australia
Postal Address GPO Box 133, Brisbane Qld 4001 Australia
T 07 3331 3333
E sra@sugarresearch.com.au
sugarresearch.com.au

