Welcome to the second edition of CaneConnection

With the crush now completed we focus on the new crop and laying the foundations to maximising productivity and profitability in the coming season.

For every cropping cycle, obtaining the maximum yield potential starts with the fallow.

In this edition of CaneConnection we discuss some of the key considerations during this important phase. We also review what the latest research says about how much nitrogen should be applied after the fallow.

Likewise in the ratoon crops, good weed and nutrient management underpins future success and as such we have some helpful stories focusing on these areas.

We also profile the Your SRA at Work menu of our website. SRA is your company and we want you to know where your money is being invested. Your SRA at Work has been specifically developed to address this question.

As part of the Your SRA at Work menu we have launched the ‘SRA Trial Tracker’, an online tool that uses Google Earth™ technology to show where research projects and trials that we manage, contribute to or fund are located, in many instances down to the block level. This feature will enable you to relate the location of research to your farm and your situation. The tracker has easy-to-follow instructions and I encourage you to visit our website to explore it further.

I would like to thank the many individuals who provided feedback on our first edition of CaneConnection. SRA is your industry-owned company and it is important that everything we do meets your needs. It is only through receiving your feedback, both positive and negative, that we can measure whether we are achieving this outcome.

As always if you have any suggestions about topics that you would like covered in future editions or how we can improve this or any other publications, please let me know by emailing communications@sugarresearch.com.au

With the crush now completed we focus on the new crop and laying the foundations to maximising productivity and profitability in the coming season.
The fallow – one of the busiest times on the farm

While your land has a break from growing cane, you have an ideal opportunity to undertake many farm operations which are not possible during the normal growing period. Make the most of the opportunities which the fallow offers you to set your farm up for high-yielding profitable cane crops in the years to come.

Critical components of the fallow

- Free of all living sugar cane to break disease cycles
- Take the opportunity to reduce the weed seed bank
- Manage any potential erosion risk
- Increase organic matter and nutrition by planting legumes
- Reconsider whole farm layout, drainage and irrigation system design

The benefits of using a fallow

A well-managed fallow will improve both the soil biology and soil structure and should increase yields from the following plant and ratoon crops. Works carried out during the fallow can improve drainage, irrigation systems and farm layouts.

Jobs to consider during the fallow

1. **Take a soil test** – Soil tests are best taken at the start of the fallow to allow time for soil ameliorants such as lime or gypsum to be added before the fallow legume crops are planted.

2. **Undertake earthworks in and around the block** – The fallow is the only opportunity you have to undertake land leveling operations in the block. In many cases, grassed headlands and waterways will have captured silt which has washed out of the block. These headlands and drains need to be lowered and cleaned out and the fallow is the perfect opportunity.

3. **Manage soakage areas** – In some blocks, the installation of slotted underground drainage pipes could improve yield by removing excess ground water.

4. **Amalgamate and realign blocks** – Harvesting and farming efficiency is improved by increasing row length and the quality of on-farm roads and tracks.

5. **Upgrade irrigation systems** – Many irrigation system upgrades require more underground pipeworks or earthworks which is only possible during the fallow.

6. **Manage the weed seed bank** – The fallow should be kept free of weeds to reduce weed seed set and lower the weed seed bank.

7. **Control problematic weeds** – Weeds such as nut grass are best controlled during the fallow when a wider range of control options can be used than is normally available.

8. **Manage cane pests and diseases** – To break disease cycles, cane blocks need to be kept free of living sugar cane plants during the fallow. Living cane plants allow pests to survive over the fallow and reinfest the new plant cane crop.

9. **Manage erosion risk** – The movement of sediment is one of the major contributors to reduced water quality. Block design needs to incorporate erosion management structures such as grassed waterways and contour banks.

10. **Plant a fallow legume crop** – The preferred option of fallow management is to plant soybeans or other legume crops into either a sprayed out or cultivated fallow. This is an ideal way of improving both the biology and the structure of the soil, reducing erosion potential from the block while adding nitrogen to the soil.

Why use a fallow crop

The aim of every good fallow is to break weed and disease cycles and prepare the land for the coming cane crop. The fallow is a good time to add nutrients, such as lime, and undertake drainage and land-leveling works.

As the fallow occurs during the wet season it is important that the fallow land is protected from erosion as much as possible. This is best achieved through having a soil cover in the form of a crop or trash blanket. The fallow needs to be free from living cane plants which can harbour pest and diseases.
As you’ve read in the previous article, growing a fallow crop can provide a wide range of benefits. Growing legumes in the fallow is a common practice. However, questions remain about the amount of nitrogen (N) available for sugarcane in plant and ratoon crops following legume fallows, and whether N applications to these crops can be reduced.

Do I need to apply more or less nitrogen after the fallow?

The release of N and the impact of rain

A recent SRA and Queensland Department of Science, Information Technology, Innovation and the Arts (DSITIA) research project, supported by the Australian Government’s Caring for Our Country Reef Rescue Water Quality Research and Development Program, investigated aspects of N release from legume break crops in sugarcane rotations, and the implications for water quality.

The project included a desk-top study, several field trials in the Herbert, Bundaberg and Mackay cane-growing districts, pot experiments and laboratory investigations.

Previous investigations indicated that there is some carry-over of N from fallow legume crops to the first ratoon sugarcane crops. The recent trials have shown that this is highly dependent on rainfall conditions.

For example in the Herbert district, a ‘good’ legume fallow supplied enough N for the sugarcane plant crop, but insufficient N to meet the needs of the first ratoon crop. In Bundaberg, marked differences in the rainfall pattern experienced in two separate sugarcane crop cycles indicated that we cannot easily predict what N will be available to a sugarcane ratoon crop following a legume fallow.

What’s works best are the SIX EASY STEPS™ guidelines

From this recent study we found that N applied to the first ratoon sugarcane crop after a good legume fallow could possibly be reduced.

However, this reduction in applied N will be dependent on several factors which include legume residue management (surface or incorporated), soil type, position in the landscape, weather and climate, and tillage practices.

These factors need to be assessed for a particular site or block when decisions are being made about possible reduced N applications.

We concluded that the SIX EASY STEPS™ guidelines for applying N to the first ratoon crop following legume fallows should remain unchanged.

SIX EASY STEPS™ guidelines

Many growers have been trained on the SIX EASY STEPS™ guidelines to help them farm sugarcane more economically, effectively and sustainably through applying balanced nutrition.

This means neither under nor over-applying nutrients to individual blocks. Over-applying a specific nutrient that is not needed, will cost money and will not improve yield. It may also have negative environmental consequences.

Under-applying a specific nutrient, or not applying a nutrient that is needed, can result in a yield reduction and will limit potential income. It may also result in the ‘mining’ of nutrients on-farm and possible degradation of the soil resource.

Using the SIX EASY STEPS™ guidelines can minimise these risks.
What are the SIX EASY STEPS™?

1. Knowing and understanding your soils – identifying soils according to basic properties such as colour, texture, structure, depth and position in the landscape. This knowledge will form the basis for making management decisions on-farm.

2. Understanding and managing nutrient process and losses – identifying where nutrient losses occur and the management actions that can minimise their risk.

3. Regular soil testing – understanding the chemical and nutrient properties of soil within a particular block to help determine fertiliser type and rates.

4. Adopting soil-specific nutrient management guidelines – using soil-specific nutrient guidelines to manage fertiliser inputs in a more precise way, versus a traditional ‘one size fits all’ approach.

5. Checking the adequacy of nutrient inputs – through a combination of soil and leaf analyses to check the adequacy of fertiliser recommendations and nutrient inputs.

6. Keeping good records – using farm data to enable growers to make informed decisions about nutrient management, especially modifications to nutrient inputs for individual blocks of cane.

Getting to know your soils better

Soil-specific nutrient management guidelines are available for these cane-growing districts:

> Bundaberg
> Herbert
> Johnstone Catchment
> New South Wales
> Plane Creek
> Proserpine

These books can be downloaded from the SRA website – simply visit www.sugarresearch.com.au/growing_cane/resource_library/ebooks/

Coming in 2014

Guidelines for Isis, Mackay and the Wet Tropics.
Using diuron-based herbicides? Know your no-spray periods

Following the Australian Pest and Veterinary Medicines Authority APVMA review of diuron, the APVMA permit PER 13874 which allowed for the phase out of old stock of diuron-based products has now expired. This means that all diuron-based herbicides should be used as per their new product label instructions.

Products containing diuron only

> If using at 450 g to 1.8 kg diuron active per hectare, region-specific no-spray periods apply:

<table>
<thead>
<tr>
<th>Region</th>
<th>No-spray periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet Tropics</td>
<td>Prohibited all year</td>
</tr>
<tr>
<td>Burdekin</td>
<td>Prohibited 1 January – 29 February</td>
</tr>
<tr>
<td>Mackay-Whitsunday</td>
<td>Prohibited 1 December – 30 April</td>
</tr>
<tr>
<td>Burnett-Mary</td>
<td>Prohibited 1 November – 29 February</td>
</tr>
<tr>
<td>NSW</td>
<td>Prohibited 1 November – 30 April</td>
</tr>
</tbody>
</table>

For example: Nufarm Diuron 900DF, Bayer Diuron 900WG, Crop Care Diurex® WG, Agriron 900 WG at 500 g to 2 kg/ha.

> At rates less than 450 g diuron active per hectare use at any time of the year in any region, mixed with paraquat.

For example: Nufarm Diuron 900DF, Crop Care Diurex® WG at rates less than 500 g per hectare.

Warning: Other products may not be registered for low-rate use at any time of the year.

Products containing diuron plus hexazinone

> If using at 1.4 to 1.8 kg diuron active per hectare, region-specific no-spray periods apply:

<table>
<thead>
<tr>
<th>Region</th>
<th>No-spray periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet Tropics</td>
<td>Prohibited all year</td>
</tr>
<tr>
<td>Burdekin</td>
<td>Prohibited 1 January – 29 February</td>
</tr>
<tr>
<td>Mackay-Whitsunday</td>
<td>Prohibited 1 November – 30 April</td>
</tr>
<tr>
<td>Burnett-Mary</td>
<td>Prohibited 1 November – 29 February</td>
</tr>
<tr>
<td>NSW</td>
<td>Prohibited 1 November – 31 March</td>
</tr>
</tbody>
</table>

For example: Dupont™ Velpar® K4™ DF®, Crop Care Barrage and Farmoz Bobcat® Combi WG at 3 to 3.8 kg/ha.

> At less than 450 g diuron active per hectare, use at any time of the year in any region.

For example: Dupont™ Velpar® K4™ DF®, Crop Care Barrage and Farmoz Bobcat® Combi WG at less than 960 g/ha.

> You can use Dupont™ Velpar® K4™ DF®, Crop Care Barrage and Farmoz Bobcat® Combi WG for spot-spraying at 1 kg/100 L at any time of the year in any region (up to 5 per cent of total farm area).
Calculating tissue-cultured plantlet orders

Tissue culture is an excellent source of clean seed for all varieties and can help reduce the spread of serious diseases such as ratoon stunting disease, smut and Fiji leaf gall.

Why use tissue-cultured plantlets?

Earlier commercial-scale production of more productive new varieties will add value to your farming system and this can be achieved when using tissue-cultured plantlets. Tissue-cultured plantings are more uniform and produce more sticks than conventional plantings so larger quantities of planting material are made available.

Need to calculate how many tissue-cultured plantlets to order?

We’ve made it easier with our new online tissue-cultured plantlets calculator. It demonstrates the speed at which large quantities of planting material can be produced from a set number of plantlets or for a set cost to the grower. Simply input your numbers and compare the options to see which works best for your farming operations:

Whole stick option
- **Year 1**
 - Order fewer plantlets, lower up-front costs.
- **Year 2**
 - Higher labour requirement for hand-cutting and whole-stick planting.
- **Year 3**
 - Outputs an estimate of the tonnes produced and hectares required for planting.

Billet planting option
- **Year 1**
 - Order more plantlets, higher up-front costs.
- **Year 2**
 - Low labour requirement, cut with harvester and billet plant.
- **Year 3**
 - Outputs an estimate of the tonnes produced and hectares required for planting.

Call your local productivity services group to order tissue culture now for delivery in spring 2014. Orders close soon.
Eyes on herbicides

Growers will be very aware of the increasing scrutiny the sugarcane industry is under regarding herbicide run-off from farms.

Concerns over the level of herbicides, particularly PSII herbicides (diuron, atrazine, hexazinone and ametryn) that target the cane plant’s photosynthetic pathway (also known as photosystem 11) in waterways and in the Great Barrier Reef lagoon, contributed to the Federal Government review of diuron. These concerns also led to the introduction of the Queensland Reef Regulations in 2009 and the development of the industry’s Best Management Practices (BMP) program led by CANEGROWERS Australia that is currently being rolled out.

Continued water quality monitoring will measure our success

> Reef Plan is a collaborative program between the Federal and Queensland governments. Reef Plan has a target of reducing the PSII herbicide pollutant load within the Great Barrier Reef lagoon by 60 per cent, by 2018. The main concerns are the effects of these herbicides on seagrass beds and phytoplankton.

> Water quality monitoring and modelling to date indicates:

* The Wet Tropics account for 61 per cent of total PSII herbicide pollutant loads while accounting for only five per cent of the total Great Barrier Reef catchment.

* Freshwater wetlands in the Lower Burdekin are considered to be at high risk from PSII herbicides.

* The Mackay-Whitsunday region contributes 12 per cent of total PSII herbicide pollutant loads while accounting for only two per cent of the Great Barrier Reef catchment.

* The Mary-Burnett region contributes slightly more than nine per cent of the total PSII herbicide load while accounting for 13 per cent of the Great Barrier Reef catchment.

What the science is showing

> An increasing body of research evidence shows that herbicide losses into waterways can be reduced by modifying the way herbicides are applied:

* Trials conducted by CSIRO and the Centre for Tropical Water and Aquatic Ecosystem Research in the Burdekin cane-growing district measured herbicide levels in run-off from furrow irrigation.

The trials demonstrated that band spraying over raised beds decreased the total load of atrazine and diuron by 90 per cent or more, compared to conventional blanket spraying of those herbicides. This was despite the area being covered with those herbicides by the banded application being only 60 per cent less than the blanket application.

* Sugar Research Australia, the Queensland Government and the National Centre for Engineering in Agriculture compared herbicide losses in rainfall run-off between banded spray application and blanket spray coverage in the Burdekin cane-growing district.

The trials showed that using band spraying to reduce the percentage of area sprayed to 50 per cent also decreased the amount of herbicide in rainwater run-off by 50 per cent. The research supports the use of PSII residuals and the more soluble knockdowns as banded sprays, rather than blanket sprays. In this trial, the percentage loss of 2,4-D in run-off was much higher than either glyphosate or fluoroxypr (Starane®).
Trials in the Mackay region by the same research organisations compared losses of residual herbicides in rainwater run-off with that of knockdown herbicides.

In a blanket spray situation, the percentage loss of residual herbicides (diuron, hexazinone, metolachlor) was 60 per cent and 24 per cent higher than for glyphosate and 2,4-D, respectively.

In a banded spray situation, the percentage loss of the residuals was 32 per cent and 29 per cent higher than for glyphosate and 2,4-D, respectively.

Importantly, incorporation of residual herbicides by rainfall or irrigation (without causing run-off) and timing of application at least 20 days before rainfall run-off occurred gave the highest reduction in herbicide losses.

Trials conducted in the Herbert cane-growing region by the Queensland Government, Herbert Cane Productivity Services Limited, James Cook University, and Terrain Natural Resource Management compared the losses of residual and knockdown herbicides in rainwater run-off.

The effect of a trash blanket on herbicide loss was also measured. On no-trash ratoons the percentage losses in run-off of residual herbicides ranged from six to 24 per cent, compared to knockdown herbicide losses of between zero and 18 per cent. Utilising a trash blanket reduced these losses by 43 per cent and 24 per cent for residuals and knockdowns, respectively.

Opportunities for the Australian sugarcane industry

The opportunities for the sugarcane industry in achieving the 60 per cent reduction of PSII herbicides by 2018 lie in:

> Refining banded spray strategies that target the application of residual herbicides to the cane bed so that the inter-row is also kept weed free, at a low cost and with crop safety.

> Minimising the risk of losing residual herbicides in rainfall run-off by:

 * incorporating residual herbicides by rainfall or irrigation, without run-off

 * timing the application of herbicides so that the risk of rainfall run-off within 20 days after rainfall is minimal.

> Understanding the options for other herbicides that give good weed control and minimise environmental risk.

> Developing more robust integrated weed management systems that potentially reduce reliance on herbicides.

References and further reading

Oliver et al. 2014. Banded applications are highly effective in minimising herbicide migration from furrow-irrigated sugar cane. Science of the Total Environment 466-467, 841-848.

Rohde et al. 2013 First 20 days after herbicide application is the high-risk period for run-off in the Mackay-Whitsunday region. 2013 Paddock Case Study: Sugarcane Reef Water Quality Protection Plan.

Above: Rainfall simulator being used to measure herbicide in runoff trials.
Increasing soil organic matter is widely regarded as beneficial to soil function and fertility. In agricultural production systems, it is integral to sustainable farming.

Many of the farming practices undertaken on cane farms, such as green cane harvesting, growing fallow legume crops and reducing tillage, are aimed at maintaining or increasing soil organic matter levels.

To gain a better understanding of soil organic matter, we will have a look some of its key features.

Soil organic matter functions

Organic matter is central to the functioning of many physical, chemical and biological processes in the soil. These include nutrient turnover, soil structural stability and moisture retention.

What is the optimum level of soil organic matter?

An optimum level of soil organic matter is difficult to quantify because the quality and quantity of different organic matter fractions needed to support various functions varies with soil type, climate and management. However, it is generally considered that soils with an organic carbon content of less than one per cent are functionally impaired.

What is the difference between soil organic matter and soil organic carbon, as measured on soil tests?

Soil organic matter is derived from the breakdown of plant and animal material. Soil organic matter is difficult to measure directly. On the other hand, soil organic carbon isn’t. So laboratories tend to measure soil organic carbon and use a conversion factor to estimate the amount of organic matter held within a soil. About 58 per cent of the mass of organic matter exists as carbon. Therefore, if we determine the amount of soil organic carbon in a sample and multiply it by 1.72, we can estimate the proportion of organic matter in the soil sample:

\[
\text{Organic matter (\%) } = \text{Total organic carbon (\%) } \times 1.72
\]

Calculating the amount of soil organic matter in soil

For a soil with one per cent soil organic carbon:

\[
\text{Amount of soil organic matter = Total organic carbon (\%) } \times 1.72 \times \text{soil mass (t/ha)}
\]

= \(1.0 \times 1.72/100 \times 2400\)

(for a soil with a bulk density of 1.2 and sampling depth of 200 mm)

= 41.28 tonnes organic matter per hectare

How much organic carbon remains in the soil?

Microbes digest up to 90 per cent of organic carbon that enters the soil in organic residues. In doing so, they respire the carbon back into the atmosphere as carbon dioxide (CO2). Microbes continually break down organic residues, eventually converting a small proportion of them to humus, which gives the topsoil its dark colour. Although up to 30 per cent of organic inputs can eventually be converted to humus, depending on soil type and climate, this value is often significantly less.

Clay soils in cool dry climates have the greatest ability to increase soil organic matter level. On the other hand, sandy soils in warm wet environments have the lowest ability to increase in soil organic matter. Many of the soils found in the sugarcane industry are sandy soils in warm wet environments and this makes building soil organic matter levels difficult.
What are the components of soil organic matter?

All soil organic matter comes from plants. It can be divided into ‘living’ and ‘dead’ components in various stages of decomposition. Generally, soil organic matter is comprised of:

- 85 per cent dead material
- 10 per cent living root material
- 5 per cent soil biota.

How much soil biota do I have in my farming system?

The amount of soil biota in cane fields can be calculated by multiplying the amount of soil organic matter (in tonnes) by the typical percentage of soil biota.

Using the examples above, if we have 40 t/ha of soil organic matter, of which 5 per cent is soil biota, then the amount of soil biota is calculated thus:

40 x 0.05 = 2 t/ha.

Advice for maximising soil organic matter on a cane farm

1. It is a long and difficult process to increase soil organic matter levels because much of the organic matter added to the soil is consumed by the soil biota and respired back to the atmosphere as CO₂. Continual inputs of organic matter are required to maintain the current soil organic matter levels. Green cane harvesting and legume crops can contribute to these inputs.

2. Growing large crops and green manure crops returns as much organic matter as possible to the soil. Choosing not to burn is also a positive step.

3. Tillage increases the rate at which soil organic matter is lost. Moving to a reduced tillage system slows the rate of organic matter loss from the system.

4. Adding soil biota brews to the soil may have little or no effect as there is already a large soil biota pool. The size of that pool is limited only by available food sources. If you want a bigger soil biota pool, add more soil organic matter.

More information on the management of soil organic matter

This can be found in the Managing Soil Organic Matter practical guide from the Grains Research and Development Corporation. This publication can be read and downloaded at www.grdc.com.au/GRDC-Guide-ManagingSoilOrganicMatter

Have you seen the latest CaneClips?

CaneClips – our weekly extension videos – are a useful way to receive practical growing advice and find out what the latest research is saying.

We encourage you to watch our recent series of videos that showed how some growers in the Southern, Central, Burdekin and Wet Tropics regions are maximising cane yields.

Visit the SRA website www.sugarresearch.com.au

To automatically receive CaneClips, register by clicking the Subscribe to Updates link.

To view our library of videos, click on the CaneClips link.
The sugar industry has a long history of working with governments to prevent the spread of serious pests and diseases, and to manage incursions or outbreaks.

The Federal and Queensland governments have supported the sugar industry legislation including the Queensland Plant Protection Act 1989 (the Act), Plant Protection Regulation 2002 and the Plant Protection (Approved Sugarcane Varieties) Regulation 2003.

In the past, BSES conducted regulatory roles in an agreement with Biosecurity Queensland (BQ), part of the Department of Agriculture, Fisheries and Forestry Queensland (DAFFQ). SRA has taken a different approach to its involvement with biosecurity and no longer fulfils a regulatory role. All regulatory actions are now performed by BQ.

Organisations or individuals are required by law to obtain an approval (permit) before moving plant material or appliances (machinery) between Pest Quarantine Areas (PQAs).

Movement of Sugarcane Machinery between Pest Quarantine Areas

These procedures must be followed by an individual or organisation who wants to move an appliance that has been in contact with sugarcane from one PQA to another:

> Clean down the appliance using high-pressure washing equipment to ensure all contaminants (soil, stalk, leaves, roots and juice) are removed.
> An inspector (under the Act) must be notified that an appliance is being moved. The inspector will inspect the appliance to ensure it is clean. If the cleanliness standard is not met then the inspector will indicate this and further cleaning will be required.
> Once the inspector is satisfied that the appliance meets the required cleanliness standard, they will issue an approval for the transfer of the appliance from the existing PQA to the other PQA.

A number of productivity service officers have been appointed under the Act as appliance inspectors. Additional training courses are scheduled to be conducted by Biosecurity Queensland for further appointments.

Movement of Sugarcane Plant Material between Pest Quarantine Areas

An individual or organisation who wants to move plant material (soil which has been in contact with sugarcane, roots, stalk and leaf) between PQAs, must obtain an approval before doing so.

The inspector will require the following information:

> The full contact details of the individual or organisation sending the material and the originating PQA.
> The full contact details of the individual or organisation receiving the material and the destination PQA.
> The variety or varieties being moved.
> The part of the plant being moved and what it will be used for.

Changes to biosecurity within the Queensland sugarcane industry

James Ogden-Brown
Development Officer – Biosecurity
Professional Extension and Communication Unit

Moving machinery between PQAs? Contact your local productivity services group or Biosecurity Queensland on 13 25 23.

Moving plant material? For all Plant Movement Approvals contact Biosecurity Queensland on 13 25 23.
Offence warning

When approvals are issued they come with conditions which must be adhered to before movement can take place.

A person who contravenes the conditions of an approval given by an inspector under section 117 of the Plant Protection Regulation 2002 commits an offence under section 11(7) of the Plant Protection Act 1989. The maximum penalty for an offence under this section is 2000 penalty units for an individual ($220 000) or 10 000 penalty units for a company ($1 100 000). A penalty unit is currently set at $110.00.

The importance of quarantine borders

Some endemic diseases exist only in certain PQAs but not in others. Restricting the movement of plant material and machinery up and down the state helps to stop the further spread of these diseases.

Pest Quarantine Area boundaries

See map below.
When quarantine borders work well

Fiji leaf gall disease was recorded in heavy levels in the Southern region in the early 80s. By preventing the movement of plant material north through quarantine control, the disease has never been recorded beyond Proserpine. Breeding resistant varieties has also reduced the impact of the disease.

The biggest threat to our industry is an exotic threat such as Sesamia or Top borer. Failure to isolate and eradicate an incursion would be devastating to the industry if these borers crossed our borders.

We only have to look at the effect these pests have had on our neighbour’s industry. Ramu Estate in PNG produces half the tonnes of sugar per hectare that we do here and most of this loss has been caused by borers.

Report any suspicious pest or disease to your local productivity services group or the Plant Health Australia Hotline on 1800 084 881.

Report any illegal movement of plant material or machinery between PQAs to Biosecurity Queensland on 13 25 23.

Protecting our industry

Our industry can only be protected if all participants do the right thing.

- Ensure that machinery is cleaned to the required standard.
- Plant material moved between PQAs will have restrictions on its movement.
- Ensure approvals are applied for and are in place before any appliance or plant material is moved.
It’s important that you understand how your industry-owned company works, how you can be directly involved in SRA and importantly, how we invest your levies.

It’s easy to discover this information in the Your SRA at work menu on our website.

Learn more about:

> The research projects we fund and how they address industry priorities.

> How we are growing industry’s knowledge and fostering new ideas through our investment in scholarships.

> The current issues affecting our industry, such as Yellow Canopy Syndrome, and how we are helping to manage their impact.

> The positive changes we are making to improve the products and services we offer to our levy payers.

> The events we are hosting which can assist you to farm better or to play a greater role in our company.

> The activities our corporate division are delivering as part of our ongoing operational and governance responsibilities.

> Becoming an SRA Member.

In this menu you will also find the SRA Trial Tracker. This new tool uses Google Earth™ technology to map the research projects and trials we manage, contribute to or fund.

This tool will be updated regularly with new research projects as they start. We will also add plain English reports from completed projects so that you can understand what was achieved from your investment and how you may benefit.

Visit sugarresearch.com.au/Your SRA at work today.

Above: The Your SRA at work toolbar on the website. Right: The SRA Trial Tracker tool. By clicking on an icon you can find out more about a particular research project.
For letters to the editor or to change your address please email communications@sugarresearch.com.au or write to us at the address above.